
Temporal Correlation Patterns

Intersecting Joins, Streams, Events and Reactive Programming

REBLS ’15

Oliver Bračevac
TU Darmstadt, Germany

ABSTRACT
Reactive languages provide a number of abstractions such as
joins, streams, events and signals with capabilities to filter
and correlate data. However, these languages/frameworks
are often limited by the use of low-level combinators and
require boilerplate code for complex data correlations.

In this paper, we argue that declarative temporal pattern
matching in the style of Complex Event Processing enriches
current language designs with expressive and concise data
correlations. Complex event patterns define high-level events
from structural and temporal constraints on multiple event
sources. As such they constitute a promising addition to the
reactive languages toolbelt. Nonetheless, there are highly
diverse variants of pattern matching semantics, where none
of the established languages supports the full spectrum, cur-
rently. We outline our current research in designing a univer-
sal, general purpose semantics for complex event correlation
in reactive languages.

1. INTRODUCTION
There has been a surge of languages, libraries, frameworks

and analytics engines which provide reactive abstractions
for processing implicit or explicit flows of data [16, 2], be
it events, streams [5], channels or signals [9, 14, 17]. In
these systems, developers manipulate the flow of data with
transformations (e.g., flatMap), filters and combinators (e.g.,
zip, join). In a broader sense, programmers correlate or
find patterns of coincidence in ever changing data sources.

This paper analyzes the data correlation capabilities of
reactive systems and relates them to the existing body of
research on Complex Event Processing (CEP) [8]. The latter
offers feature-rich, declarative, pattern-based queries involv-
ing structural and temporal constraints on events in order to
identify high-level situations of interest. As a result of taking
the CEP standpoint, we view data correlation as a temporal
pattern matching problem. For example, determining the
route of the five most expensive commodities in the last 24
hours may involve steps like the following. Specifying a “top-
five” aggregate, retaining event data in a 24-hour window and
finding a Kleene star [1, 10, 7] among shipment events which
must be consecutive by their time stamps, share the same
commodity ID and detect where two consecutive shipments
must agree on the coordinates, the end and the start.

We demonstrate that abstractions for data correlation
in current reactive systems have limited expressivity and
are special cases of CEP-like temporal patterns. We gain
insights on how a sufficiently expressive pattern language may
enable seamless integration of different reactive paradigms in

applications. Finally, we take the perspective of identifying
declarative synchronization and coordination in concurrent
programming as special cases of data correlation.

This approach provides a significant gain in expressivity
but it is challenging. Temporal pattern matching bears con-
siderable complexity and variability due to a wide array
of parameters controlling the matching semantics, such as
selection, consumption, contiguity and reasoning about oc-
currence time. For example, given a sequence pattern “a
followed by b” and an observation sequence abab, are there
two or three occurrences? Both answers may be acceptable,
depending on the use case. For example, continuity [1, 21]
is a semantic parameter which controls what is considered a
followup event. We argue that developers should have the
full control over the semantic options for temporal pattern
matching in order to quickly adapt to new and changing
requirements. Instead, currently, no reactive, stream, CEP
or related language supports the full spectrum of pattern
matching semantics for correlations.

As a first step to address this issue, we propose CorrL, a
formal semantic framework based on finite automata, which is
suitable to reason about the design space for data correlations.
CorrL is capable of expressing joins, partial order patterns,
stream transformations, aggregations and timing predicates.
This paper outlines our current work on developing CorrL
and future research directions.

2. CORRELATION IN REACTIVE SYSTEMS
For brevity, we will focus our discussion on join patterns

(joins) as conceived by Fournier and Gonthier [12]. Join
patterns are declarative synchronization patterns for concur-
rent programming in asynchronous message passing systems.
Programmers specify patterns to synchronize over a finite
number of message occurrences on asynchronous channels.
Associated to a pattern is its reaction, which is a computation
that triggers each time the join pattern matches successfully.

A standard example is a message exchange

alice〈a〉 & bob〈b〉 . bob〈a〉 ‖ alice〈b〉

which atomically swaps message payloads on the two chan-
nels alice and bob. The part to the left of . specifies a
synchronization pattern on the channels (separated by &).
Each message on both channels carries a payload value. The
expression to the right specifies the reaction, which is to
send bob’s payload (bound by the pattern to b) to alice and
alice’s payload (bound to a) to bob, in parallel. Triggering a
reaction means to atomically consume the messages matching
the join pattern from the channels and invoke the reaction



1 Serializer(src1,. . ., srcn, N, out) :=
2 //take the union of all source streams
3 let srcs = union(src1,. . .,srcn) in
4

5 //initialize buffer with the first frame
6 srcs〈frame〉 if frame.id == 0 .
7 buffer〈frame :: Nil〉 ‖ last〈0〉
8

9 //append to buffer in the order of the id
10 srcs〈frame〉 & buffer〈fs〉 & last〈n〉
11 if frame.id == n + 1 .
12 buffer〈fs·frame〉 ‖ last〈frame.id〉
13

14 //output buffer in chunks
15 buffer〈fs〉 if fs.length ≥ N .
16 buffer〈fs.drop(N)〉 ‖ out〈fs.take(N)〉

Figure 1: Stream serializer pseudocode with join
patterns, guards and pattern matching.

body with the parameters extracted from the pattern. Addi-
tionally, if a message matches multiple patterns, exactly one
of them gets to consume it, nondeterministically.

Since their introduction, a number of language designs
incorporating joins emerged, such as JoCaml [6], Polyphonic
C] [3], EventJava [11], JErlang [15] or JEScala [20]. Not to
mention library designs integrating joins into the pattern
matching facilities of the host language [13]. These lan-
guages add useful features to the basic joins concept, such as
guarded pattern matching, synchronous channels and pattern
matching in a specific order. On top of that, recent work
[19] describes lock-free algorithms for scalable and efficient
implementations of join patterns.

Most of the aforementioned designs apply joins to solve
general concurrency problems. However, they are also useful
for event and stream processing, which is why found their
way into stream processing libraries, such as Rx.1

To illustrate the utility of joins for streams, assume we want
to implement part of a player for on-demand video streaming.
Videos are chopped up into individual frames, which are
streamed from multiple distributed caches in parallel. Frames
are ordered by a consecutive id number. A player component
thus has to serialize frames into the right order. It also should
divide the serialized video stream into fixed-size chunks. We
model a serializer via join patterns, assuming “channels are
streams”. Figure 1 shows a pseudocode for such a stream
serializer over n source streams srci and a given chunk
size N, which outputs the stream of chunks to the sink out.
We use advanced language features found in current join
languages, such as filtering and correlation with guards. Our
example correlates data observed on the srcs, buffer and
last streams via join patterns and filters.

Notably, the serializer manages a state in form of a mes-
sage on channel buffer2, carrying a list of ordered frames
and last, which keeps track of the latest frame in the seri-
alization. The last two joins specify transition rules on the
state, i.e., they consume a matching state in the pattern
matching process and emit a successor state in the reaction.

1https://github.com/ReactiveX/RxJavaJoins
2We could eliminate buffer altogether, specifying a N-way
join pattern on srcs. For illustrative purposes, we chose this
verbose variant.

After initialization, the implementation should maintain the
invariant that there is exactly one such message on buffer in
order to function correctly. Similarly, there should be at most
one message on the last channel. Such as property is closely
related to the notion of signals in reactive programming [17].
A proper type system which supports signals could help in
checking the invariant statically. On the other hand, what
happens to frames delivered out of order? E.g., the buffer
is at frame 1000 but the next observed frame has number
2100. An implementation has to retain the frame until the
buffer is at frame 2099, i.e., the srcs channel represents
a collection of frames. In reactive programming terms, a
channel is therefore a signal carrying a collection type, where
singleton collection types, such as last, are important for
state representation. Our example is evidence that streams,
joins and signals can and should be expressible in a common
language or at least be interoperable. To the best of our
knowledge, no such integration has been attempted yet.

There are different variations for the join-pattern matching
semantics. Joins in the standard Join Calculus compete for
the messages in the channels and there is no prioritization
of patterns. Some implementations chose this semantics and
provide basic fairness guarantees in addition (e.g. [3]). For
our serializer example in Figure 1, fairness means that the
third pattern fires sufficiently often and is not dominated by
the second one, i.e., the entire video is delivered over out
eventually. However, for the application domain, this guar-
antee is too weak. Video playback should not be “choppy”,
which depends on timely and continuous delivery of chunks
over out. We could improve the situation by assigning a
priority to the third rule, in order to output available chunks
as soon as possible. Other join implementations, such as
JErlang [15], allow syntactic prioritization, but drop non-
determinism. Currently, no implementation allows mixed
modes, i.e., prioritize some patterns and let other patterns
compete.

A next logical step is to annotate percentages to patterns,
controlling their statistical occurrence over time. This is po-
tentially useful for probabilistic experiments, games and con-
trolled resource utilization (e.g., load balancing, scheduling).
Ultimately, the join language should provide abstractions
that allow for a dynamic adjustment of these percentages. To
fully support a smooth video stream, one has to dynamically
adjust the buffer size and firing frequency of the third rule in
Figure 1, accounting for the current input rates. It is difficult
to achieve this in a concise and declarative way in current
join implementations.

More importantly, programmers cannot choose from the
full spectrum of matching semantics for joins in today’s
implementations and require intrinsic knowledge of their
inner workings. Committing to a specific semantics is dis-
advantageous when facing different or changing software
requirements.

Finally, joins are a special kind of temporal pattern, which
requires no particular occurrence order or timing among
the events, i.e., joins require a trivial partial order. Other
sensible variants are desirable, but non-trivial to express,
e.g., selecting only events which are at most 10ms apart or
events whose payload is above average over the past hour.
Such examples are instances of CEP-like temporal patterns,
which are more general with respect to ordering, temporal
constraints and aggregations. However, CEP-like patterns do
not address the aforementioned issues of fairness and priority.

https://github.com/ReactiveX/RxJavaJoins


x2

x3

x4

x3 x4

x2 x4

x4 ;

x2 : b

x3 : a

x4 : d

x3 : a

x2 : b

Figure 2: Example of a partial order pattern in
CorrL.

3. THE CORRL APPROACH
The first goal of CorrL is to provide a formally grounded

framework for studying different event correlation semantics.
In the long term, we want to design a language for CEP-like
temporal pattern matching which enhances existing reactive
systems. We found that most works on CEP focus on im-
plementation aspects and neglect full specifications of their
query semantics, hence the need for a semantic framework.
It turns out that finite automata are often the semantic basis
of CEP systems (e.g., [10, 1, 7]), each coming with its own
definitional variations. Our efforts so far consisted of design-
ing an NFA-based intermediate representation (IR) which
we believe to be sufficiently general to express the existing
CEP semantic models.

Figure 2 shows how CorrL models partial order patterns
with automata. We require that events with name x2 and
x3 must occur before an event x4. We take the partial
order itself as the state description. Transitions have guards,
consisting of typed name bindings x2 : b and a predicate
(omitted for brevity), e.g., if the next observed event is of
type b satisfying the predicate, then the transition binds it
to the name x2, so that predicates in subsequent transitions
can refer to this event.

CorrL’s IR has a formally specified operational semantics
and is agnostic of query languages, in order to study and
support different language designs in the future. We deviate
from standard NFAs by a) assigning a local memory which
stores partial match and aggregation data to running com-
putations and b) generating output (i.e., complex events) on
success, which is derived from the match data. Each state
may transition on a particular type of event, even complex
events generated by other automata. Hence, a temporal
pattern is embodied by a collection of particular automaton
definitions, which together form a propagation graph simi-
lar to reactive programming. Each automaton has a set of
currently incomplete pattern match attempts. If an attempt
is successful, the automaton generates a complex event and
forwards the result to its dependent automata. The prop-
agation semantics is similar to ELM [9]. It incorporates
asynchronous message passing and enables concurrent and
pipelined executions, while ensuring consistent outputs.

3.1 Many-Worlds Interpretation
One of the distinguishing features of the CorrL oper-

ational semantics is how it models variability in pattern
matching. It embraces ambiguity in the sense that on every
choice point in the pattern matching process, all choices are
taken. Recall the contiguity semantic option from Sec. 1,
that controls which events are uninteresting for sequence
patterns. Thus, of the two outcomes in the example, CorrL

will yield the one with the maximum amount of matches,
where different matches may overlap on shared events. On
an operational level, this means that whenever an ongoing
automaton computation can perform a transition, it forks
into two copies, where one stays in the current state and the
other transitions into the next state. We observed similar
techniques in CEP systems, such as [18, 7].

To emulate the semantics of a specific system, we supply a
function which “cuts away” results from the set of all possible
pattern matches, where the resulting set contains precisely
the results which the system would produce. A formal model
is thus obtained from the most general semantics of CorrL
and an appropriate cut function.

Another semantic option is selection order, which controls
the order in which pattern matching considers the events
and may reduce the set of matches. For example, “the first
a followed by the last b” is different from “any a followed by
any b”. CEP query languages such as TESLA [7] or Esper3

have corresponding selection qualifiers to achieve this. In
CorrL we can express the selection order by a cut function.

4. OUTLOOK
Our work on CorrL opens a number of interesting ques-

tions which we would like to answer in future work. The
semantic framework separates the fundamental shape of a
pattern (embodied by automata definitions) from semantic
variations (embodied as cut functions). At the level of a
high-level query language, this separation facilitates adapt-
ing pattern definitions to new requirements (i.e., change the
cut function). This approach is also beneficial for studying
new kinds of selection qualifiers or other restrictions on the
result set, for which there may not be any language construct
available, yet. However, we pay a hefty price if we keep this
separation at the implementation level. The set of all possi-
ble pattern matches may yield exponentially many results,
which we would have to retain and pass to the cut function.

Ideally, we should be able to discard automata computa-
tions as early as possible, i.e., fuse the cut computation into
the pattern matching process, but in a way which is generic
and extensible and not restricted to a few well-known contigu-
ity and selection order strategies. The fusion process should
yield efficient pattern matching code, e.g., if we modeled
standard join patterns (Sec. 2), the performance should be
comparable to [19]. We are currently working towards a JVM
implementation of CorrL’s semantic framework written in
Scala.
CorrL so far models the variability of temporal pattern

matching on the semantic level. It is also important to expose
the full range of parameters at the language level to users
and to abstract over variants. We are evaluating query DSLs
based on object algebras, where recent work in the stream
processing domain appears promising [4].

In Section 2 we pointed out interesting variations of join
patterns, which control fairness and priorities. It is currently
not clear if and how we can model all of them with automata
and cut functions alone or if the semantic framework must
be enriched.

Acknowledgements.
This work has been supported by the European Research

Council, grant No. 321217.

3http://www.espertech.com/products/esper.php

http://www.espertech.com/products/esper.php


5. REFERENCES
[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman.

Efficient Pattern Matching over Event Streams. In
Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’08,
pages 147–160, New York, NY, USA, 2008. ACM.

[2] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak,
R. J. Fernández-Moctezuma, R. Lax, S. McVeety,
D. Mills, F. Perry, E. Schmidt, and S. Whittle. The
Dataflow Model: A Practical Approach to Balancing
Correctness, Latency, and Cost in Massive-scale,
Unbounded, Out-of-order Data Processing. Proceedings
of the VLDB Endowment, 8(12):1792–1803, 2015.

[3] N. Benton, L. Cardelli, and C. Fournet. Modern
Concurrency Abstractions for C#. Transactions on
Programming Languages and Systems (TOPLAS),
26(5):769–804, 2004.

[4] A. Biboudis, N. Palladinos, G. Fourtounis, and
Y. Smaragdakis. Streams à la carte: Extensible
Pipelines with Object Algebras. In J. T. Boyland,
editor, 29th European Conference on Object-Oriented
Programming (ECOOP 2015), volume 37 of Leibniz
International Proceedings in Informatics (LIPIcs),
pages 591–613, Dagstuhl, Germany, 2015. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[5] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine,
J. C. Platt, J. F. Terwilliger, and J. Wernsing. Trill: A
High-Performance Incremental Query Processor for
Diverse Analytics. Proceedings of the VLDB
Endowment, 8(4):401–412, 2014.

[6] S. Conchon and F. Le Fessant. Jocaml: Mobile Agents
for Objective-Caml. In Proceedings of the First
International Symposium on Agent Systems and
Applications Third International Symposium on Mobile
Agents, ASAMA ’99, pages 22–29, Washington, DC,
USA, 1999. IEEE Computer Society.

[7] G. Cugola and A. Margara. TESLA: A formally defined
event specification language. In Proceedings of the
Fourth ACM International Conference on Distributed
Event-Based Systems, DEBS ’10, pages 50–61, New
York, NY, USA, 2010. ACM.

[8] G. Cugola and A. Margara. Processing Flows of
Information: From Data Stream to Complex Event
Processing. ACM Computing Surveys, 44(3):15:1–15:62,
June 2012.

[9] E. Czaplicki and S. Chong. Asynchronous Functional
Reactive Programming for GUIs. In Proceedings of the
34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, pages
411–422, New York, NY, USA, 2013. ACM.

[10] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and
W. White. Towards Expressive Publish/Subscribe
Systems. In Proceedings of the 10th International
Conference on Advances in Database Technology,
EDBT’06, pages 627–644, Berlin, Heidelberg, 2006.
Springer-Verlag.

[11] P. Eugster and K. Jayaram. EventJava: An Extension
of Java for Event Correlation. In S. Drossopoulou,
editor, ECOOP 2009 – Object-Oriented Programming,
volume 5653 of Lecture Notes in Computer Science,
pages 570–594, Berlin, Heidelberg, 2009.
Springer-Verlag.

[12] C. Fournet and G. Gonthier. The reflexive CHAM and
the Join-calculus. In Proceedings of the 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’96, pages 372–385,
New York, NY, USA, 1996. ACM.

[13] P. Haller and T. Van Cutsem. Implementing Joins
Using Extensible Pattern Matching. In D. Lea and
G. Zavattaro, editors, Coordination Models and
Languages, volume 5052 of Lecture Notes in Computer
Science, pages 135–152. Springer-Verlag, Berlin,
Heidelberg, 2008.

[14] I. Maier. Reactive Programming Abstractions for
Complex Event Logic and Dynamic Data Dependencies.
PhD thesis, IC, Lausanne, 2013.

[15] H. Plociniczak and S. Eisenbach. JErlang: Erlang with
Joins. In D. Clarke and G. Agha, editors, Coordination
Models and Languages, volume 6116 of Lecture Notes in
Computer Science, pages 61–75. Springer-Verlag, Berlin,
Heidelberg, 2010.

[16] G. Salvaneschi, P. Eugster, and M. Mezini.
Programming with Implicit Flows. Software, IEEE,
31(5):52–59, Sept 2014.

[17] G. Salvaneschi, G. Hintz, and M. Mezini. REScala:
Bridging Between Object-oriented and Functional Style
in Reactive Applications. In Proceedings of the 13th
International Conference on Modularity,
MODULARITY ’14, pages 25–36, New York, NY, USA,
2014. ACM.

[18] N. P. Schultz-Møller, M. Migliavacca, and P. Pietzuch.
Distributed Complex Event Processing with Query
Rewriting. In Proceedings of the Third ACM
International Conference on Distributed Event-Based
Systems, DEBS ’09, pages 4:1–4:12, New York, NY,
USA, 2009. ACM.

[19] A. J. Turon and C. V. Russo. Scalable Join Patterns.
In Proceedings of the 2011 ACM International
Conference on Object Oriented Programming Systems
Languages and Applications, volume 46 of OOPSLA
’11, pages 575–594, New York, NY, USA, 2011. ACM.

[20] J. M. Van Ham, G. Salvaneschi, M. Mezini, and
J. Noyé. JEScala: Modular Coordination with
Declarative Events and Joins. In Proceedings of the
13th International Conference on Modularity,
MODULARITY ’14, pages 205–216, New York, NY,
USA, 2014. ACM.

[21] W. White, M. Riedewald, J. Gehrke, and A. Demers.
What is ”Next” in Event Processing? In Proceedings of
the 26th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS ’07, pages

263–272, New York, NY, USA, 2007. ACM.


	Introduction
	Correlation in Reactive Systems
	The CorrL Approach
	Many-Worlds Interpretation

	Outlook
	References

